Integrated microsystems (MEMS) laboratory

Integrated microsystems (MEMS) laboratory

Microelectromechanical systems (MEMS) are from a technology that combines microcircuits with tiny mechanical devices such as sensors, valves, mirrors, gears, or incorporated directly triggers the semiconductor. C2MI MEMS laboratory has class 10 clean rooms and class 1 clean rooms for the wafer surface. The infrastructure is suitable for both the micro-machining surface layer and the silicon ones.

Surface micromachining

Subsurface micromachining technique is a process used to produce microelectromechanical systems (MEMS). Contrary to the bulk micromachining, where a silicon substrate is selectively etched to produce structures, surface micromachining uses microstructures by deposition and etching of the various structural layers on top of the substrate.

Generally the polysilicon is widely used as one of the layers and silicon dioxide is used as a sacrificial layer which is then removed or etched to create the necessary vacuum in the thickness. The added layers are generally very thin and sizes ranging from 2 to 5 micron.

The main advantage of this machining process is the ability to achieve monolithic microsystems in which the electronic and mechanical components are integrated in the substrate. The micro-machined component surface are smaller compared with their counterparts bulk micromachining.

Since the structures are built on top of the substrate rather than inside, the substrate properties are not as important as the bulk micromachining, and the expensive silicon wafers can be replaced by less expensive substrates, such as glass or plastic. The size of the substrates may also be much larger than a silicon wafer, and micro machining subsurface is used to produce large TFT substrates on the glass area for flat screens. This technology can also be used for the manufacture of solar cells with thin layers which can be deposited on the glass, but also on PET substrates or other non-rigid materials.

Sub-surface micromachining

Subsurface micromachining technique is a process used to produce microelectromechanical systems (MEMS). Contrary to the surface micromachining technique, which uses a thin film deposition succession and selective etching, micromachining subsurface defines structures by selectively etching the inside of a substrate. While surface micromachining creates structures over a substrate, micromachining the bulk material structures within the substrate.

Typically, silicon wafers are used as substrates for micro-machining subsurface, because they can be etched anisotropically wet forming very regular structures. Wet etching generally used alkaline liquid solvents, such as potassium hydroxide (KOH) or tetramethylammonium hydroxide (TMAH) to dissolve the silicon that has been exposed during photolithographic masking step.

These alkaline solvent dissolve silicon highly anisotropic manner with crystallographic orientations. This dissolution is up to 1000 times faster than the others. This approach is often used with very specific crystallographic orientations in the raw silicon to produce shaped grooves V. The surface of these grooves can be atomically smooth if the engraving is done correctly, and the dimensions and angles can be defined accurately.

Metrology

2D/3D Metrology tool
Inspection Infrared: multilayer and overlay measurement
Pattern recognition and thin film metrology
Inspection visible range: particle and defect count

Photoresist Stripping and Ashing

Lift-off

Dry lift-off and detaping

Thin film deposition

Low pressure chemical vapour deposition / LSN
Plasma enhanced chemical vapour deposition
Diffusion / Oxidation
Low pressure chemical vapour deposition / TEOS
Low pressure chemical vapour deposition / ISDP

Chemical / Mechanical Polishing

Polishing and planarisation

Wafer handling

Transfer system

Bonder

Wafer bonding

Plating

Electrodeposition of metal and dielectric

Thermal treatment

Anneal
Sub-atmospheric pressure / Bake anneal
High vacuum bake

Wet etching

Wafer cleaning
Silicon etch
Oxide, nitride, aluminium etch

Dry etching

Release Etch
Metal etch
02 plasma polymers strip
Dielectric etch
Silicon etch
02 plasma polymers strip

RESEARCH

Keywords
Category

En naviguant sur notre site, certains témoins peuvent être conservés dans votre navigateur ou récupérés à partir de celui-ci. Ces informations peuvent porter sur vous, vos préférences ou votre appareil et sont principalement utilisées pour s'assurer que le site fonctionne correctement. Les informations ne permettent pas de vous identifier directement, mais peuvent vous permettre de bénéficier d'une expérience Web améliorée. Parce que nous respectons votre vie privée, nous vous donnons l'opportunité de ne pas autoriser ces témoins.

Close Popup
Privacy Settings saved!
Paramètres de confidentialité

En naviguant sur notre site, certains témoins peuvent être conservés dans votre navigateur ou récupérés à partir de celui-ci. Ces informations peuvent porter sur vous, vos préférences ou votre appareil et sont principalement utilisées pour s'assurer que le site fonctionne correctement. Les informations ne permettent pas de vous identifier directement, mais peuvent vous permettre de bénéficier d'une expérience Web améliorée. Parce que nous respectons votre vie privée, nous vous donnons l'opportunité de ne pas autoriser ces témoins.


Google Analytics
We track anonymized user information to improve our website.
  • _ga
  • _gid
  • _gat

Refuser
Save
Accepter